Last edited by Samushicage
Wednesday, July 29, 2020 | History

2 edition of Space environmental effects on the optical properties of selected transparent polymers found in the catalog.

Space environmental effects on the optical properties of selected transparent polymers

Space environmental effects on the optical properties of selected transparent polymers

  • 104 Want to read
  • 8 Currently reading

Published by National Aeronautics and Space Administration, National Technical Information Service, distributor in [Washington, D.C, Springfield, Va .
Written in English

    Subjects:
  • Aerospace environments.,
  • Optical properties.,
  • Polymers.,
  • Degradation.,
  • Environment effects.,
  • Geosynchronous orbits.,
  • Lenses.,
  • Near ultraviolet radiation.,
  • Spacecraft power supplies.,
  • Thermal energy.,
  • Ultraviolet radiation.

  • Edition Notes

    StatementDavid L. Edwards ... [et al.].
    SeriesNASA-TM -- 112522., NASA technical memorandum -- 112522.
    ContributionsEdwards, David L., United States. National Aeronautics and Space Administration.
    The Physical Object
    FormatMicroform
    Pagination1 v.
    ID Numbers
    Open LibraryOL15498481M

      List criteria used for specifying an optical coating for the space environment. Define a test plan to assure coating performance over system life. Intended Audience This course is intended for optics professionals and others who are interested in the design and production of optical coatings for space applications. Optical Properties of Metals Optical Properties of Nonmetals Applications of Optical Phenomena Environmental, and Societal Issues in Materials Science and Engineering Questions and Problems P Appendix A The International System of Units (SI) A Appendix B Properties of Selected Engineering Materials A Appendix C.

    Previously, he was manager of the Chemical Research Area at Xerox Corporation. He is the editor of the book Nonlinear Optical Properties of Organic and Polymeric Materials and a member of the American Chemical Society and Optical Society of America. Dr. Williams received his PhD in chemical physics from the University of Rochester in   Three-dimensional networks can be hydrophilic and/or hygroscopic. Optical, mechanical, and electrical properties of these materials encompass many fields of technology. Composites of carbon nanotubes (CNTs) in polymeric materials have attracted considerable attention in the research and industrial communities due to their unique optical, mechanical, and electrical properties.

    How Easy is it to See Through the Optical Properties of Thermoplastics? Transparency in thermoplastics is a property that differentiates them from many other manufacturing materials. This includes metals, ceramics and wood, and, in some cases surpasses glass. physical and optical properties, and associated phase-change temperatures. Preliminary evaluations of the effect of the space environment on the coatings and the degree of ther­ mal regulation attainable with these coatings were also made. The results from the study.


Share this book
You might also like
Londons water supply

Londons water supply

The real deal

The real deal

Early treatises on the practice of the justices of the peace in the fifteenthand sixteenth century

Early treatises on the practice of the justices of the peace in the fifteenthand sixteenth century

The Astors, 1763-1992

The Astors, 1763-1992

Canadian Jewish involvement with Soviet Jewry, 1970-1990

Canadian Jewish involvement with Soviet Jewry, 1970-1990

Hardcore Poaching

Hardcore Poaching

Graphics

Graphics

discussion paper : female participation in sport

discussion paper : female participation in sport

Comó cumplir con la regla de funerales

Comó cumplir con la regla de funerales

CLOTHING I LS

CLOTHING I LS

The changing sky

The changing sky

Management accounting in activity networks

Management accounting in activity networks

Nursing home ministry

Nursing home ministry

Psycho-analysis and social psychology

Psycho-analysis and social psychology

Space environmental effects on the optical properties of selected transparent polymers Download PDF EPUB FB2

Conversion efficiency is directly related to the polymer transmission. Space environmental effects will decrease the transmission and thus reduce the conversion efficiency. This investigation. Get this from a library. Space environmental effects on the optical properties of selected transparent polymers.

[David L Edwards; United States. National Aeronautics and Space. Conversion efficiency is directly related to the polymer transmission.

Space environmental effects will decrease the transmission and thus reduce the conversion efficiency. This investigation focuses on the effects of ultraviolet and charged particle radiation on the transmission of selected transparent polymers.

Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties. Polymers are extensively used as construction materials in space systems due to their high strength-to-weight ratio and a variety of mechanical, thermal, electrical and thermo-optical properties.

Typical polymers are polysiloxanes (silicones), epoxies, polyurethanes, polyesters, acetals, acrylics, polyamides, fluorocarbons, polyimides, by: observed in the space environment. The aspects of the space environment section of this document discusses each aspect of the space environment and what ground simulation methods translate best to actual flight results.

However, the synergism of all the elements of the space environment is difficult to duplicate on the ground. In the s, when glass-optical fibres (GOFs) were developed, the idea of using transparent polymers for the same purposes was born [VOG02].

After substantial research and the development of efficient manufacturing processes, polymer-optical fibres (POFs) were ready to be sold commercially.

Nature of Impurities -Conjugated Polymers Prepared by Ferric Chloride and Their Effect on the Electrical Properties of Metal-Insulator-Semiconductor Structures. Chemistry of Materials7 (4), DOI: /cma Space research demands very stringent requirements from these polymers because of the extreme environments experienced by these materials 1.

The polymers used outside the space system are the most affected ones. As we move from space exploration to space commercialization, these polymers have to last for 15–20 years of their designed life. Optical properties. Polymers such as PMMA and HEMA:MMA are used as matrices in the gain medium of solid-state dye lasers, also known as solid-state dye-doped polymer lasers.

These polymers have a high surface quality and are also highly transparent so that the laser properties are dominated by the laser dye used to dope. ELECTRICAL AND OPTICAL PROPERTIES TABLE D.C.

relative permittivity (dielectric constant) of selected polymers *r PE PP Polymethylpentene POM copolymer PMMA PVC PTFE EPDM Chlorosulphonated PE (CSM elastomer).

Polymers in Space. Materials Technology. This is an outdated version. Most serious problems are connected with changes of thermo optical properties, deterioration of mechanical properties, production of components of the intrinsic outer atmosphere of spacecraft that respond to contamination of its surface, and last but not least, mass.

Another major disadvantage of conventional polymer optical materials such as PMMA and PS is their poor thermal and environmental stability. This is a serious limitation because future use in optoelectronics will require better thermal properties. There are several polymers that are transparent and stable at high temperatures.

Polymers have now become widespread in their applications in optics, electro-optics, and photonics and this issue will serve to summarize the field and describe the latest research results. Papers are sought which discuss the latest research in this area and/or review the state of the research in selected areas.

About this book This text addresses the common negative perception of polymer materials on the environment with a thorough analysis of what really occurs when industry and academia collaborate to find environmental solutions.

*immediately available upon purchase as print book shipments may be delayed due to the COVID crisis. ebook access is temporary and does not include ownership of the ebook. Only valid for books with an ebook version. anticipated thermal environment.

While the optical glasses may exhibit upper service temperature limits of from to 8 C, many of the glass types having the most interesting optical properties are quite fragile, and prone to failure if cooled too quickly.

These failures are mostly attributable to cooling-induced shrinkage of the skin. Environmental Risk of Polymers and their Degradation Products Scott Lambert Submitted for the degree of Doctor of Philosophy University of York.

Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites.

The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. Optical properties of polymers, such as, gloss, transparency, clarity, haze, colour, surface aspect and refractive index, are closely linked to our perception of a plastic product’s quality and visual performance.

Polymer optical properties testing will bring you insight to accelerate development and to optimise or troubleshoot production. well as optical properties such as shape, size, refractive index, birefringence, and extinction characteristics. Physical properties such as melting point and solubility may also be measured.

However, because of the newness of some of these fibers, there is a paucity of research on the effect of environmental degradation.properties can also be further grouped into categories: mechanical, thermal, electrical, magnetic, optical etc.

The chemical properties include: environmental and chemical stability. There are also some general properties which cannot be classified within these groups: • Density, ρ (Units: Mg/m 3, g/cm 3).the ratios as low as possible to minimize deflection.

Some selected plastic optical materials with structural properties are listed in Table 2. Table 2. Structural properties and figures of merit for plastic optical materials N-BK7 82 Germanium Sapphire